Given the array nums after the possible rotation and an integer target, return the index of the target if it is in nums, or -1 if it is not in nums. You must write an algorithm with O(log n) runtime complexity.
public class Exercise8 {
private final int TARGET = 0;
private final int[] ARRAY = {4,5,6,7,0,1,2}; // index = 4
// private final int[] ARRAY = {10,12,0,4,5,7}; // index = 2
// private final int[] ARRAY = {0,7,8,9,10}; // index = 0
// private final int[] ARRAY = {3,4,6,7,8,9,0}; // index = 6
// private final int[] ARRAY = {7, -6, -3, -2, -1, 0, 5}; // index = 5
private void find(int leftIndex, int rightIndex) {
if (leftIndex == rightIndex || leftIndex + 1 == rightIndex) { // one or two elements left
int index = ARRAY[leftIndex] == TARGET ? leftIndex : (ARRAY[rightIndex] == TARGET ? rightIndex : -1);
System.out.println("Index = " + ((index > -1) ? index : "N/A"));
return;
}
int mid = leftIndex + (rightIndex - leftIndex) / 2;
if (ARRAY[leftIndex] <= ARRAY[mid] && ARRAY[leftIndex] <= TARGET && ARRAY[mid] >= TARGET) { // search in left array
find(leftIndex, mid);
return;
}
if (ARRAY[mid+1] <= ARRAY[rightIndex] && ARRAY[mid+1] <= TARGET && ARRAY[rightIndex] >= TARGET) { // search in right array
find(mid+1, rightIndex);
return;
}
if (ARRAY[leftIndex] > ARRAY[mid] && TARGET <= ARRAY[mid]) {
find(leftIndex, mid); // search in left array
return;
}
find(mid+1, rightIndex); // search in right array
}
private void solve() {
find(0, ARRAY.length - 1);
}
public static void main(String args[]) {
new Exercise8().solve();
}
}
#9. 3Sum
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0. Notice that the solution set must not contain duplicate triplets.
public class Exercise9 {
// private final Integer[] NUMS = {-1,0,1,2,-1,-4}; // triplets [[-1,-1,2],[-1,0,1]]
private final Integer[] NUMS = {1, 2, -3, 2, -4, 1, 3, 1, -2}; // triplets [[1,2,-3],[2,2,-4],[1,1,-2],[1,-4,3]]
private final int TARGET_SUM = 0;
private List<Pair<Integer, Integer>> twoSum(int targetSum, int indexThird) {
List<Integer> list = Arrays.asList(NUMS);
List<Pair<Integer, Integer>> result = new ArrayList<>();
for (int i=0; i<list.size(); i++) {
if (i == indexThird) {
continue; // duplicate
}
final int element = list.get(i); // to the left
int key = targetSum - element; // to the right
if (list.indexOf(element) == list.lastIndexOf(key) || indexThird == list.lastIndexOf(key)) {
continue; // duplicate
}
if (list.contains(key)) {
result.add(new Pair<>(element, key));
}
}
return result;
}
private void solve() {
Set<String> result = new HashSet<>();
for (int i=0; i<NUMS.length; i++) {
int thirdElement = TARGET_SUM - NUMS[i];
final int element = NUMS[i];
List<Pair<Integer, Integer>> twoSums = twoSum(thirdElement, i);
if (!twoSums.isEmpty()) {
twoSums.forEach(twoSum -> {
String label = "[" +
getMinValue(element, twoSum.getKey(), twoSum.getValue()) + "," +
getMidValue(element, twoSum.getKey(), twoSum.getValue()) + "," +
getMaxValue(element, twoSum.getKey(), twoSum.getValue()) + "]";
result.add(label);
});
}
}
System.out.println(result);
}
private int getMidValue(int a, int b, int c) {
return Math.max(Math.min(a,b), Math.min(Math.max(a,b),c));
}
private int getMaxValue(int a, int b, int c) {
return Math.max(a, Math.max(b, c));
}
private int getMinValue(int a, int b, int c) {
return Math.min(a, Math.min(b, c));
}
public static void main(String args[]) {
new Exercise9().solve();
}
}
Niciun comentariu:
Trimiteți un comentariu