24 aprilie 2024

50 DSA-Questions: Trees #33

#33. Binary Tree Maximum Path Sum

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root. The path sum of a path is the sum of the node's values in the path. Given the root of a binary tree, return the maximum path sum of any non-empty path. 

Soluția mea țărănească:

public class TreeNode {
     int val;
     TreeNode left;
     TreeNode right;
     TreeNode() {}
     TreeNode(int val) { this.val = val; }
     TreeNode(int val, TreeNode left, TreeNode right) {
         this.val = val;
         this.left = left;
         this.right = right;
     }

     int getVal() {
        return val;
     }
     TreeNode getLeft() {
        return left;
     }
     TreeNode getRight() {
        return right;
     }
}

class Solution {
    public int maxPathSum(TreeNode root) {
        Map<Integer, NodeInfo> nodes = new HashMap<>();

        calculateMax(root, 0, nodes);

        int max = Integer.MIN_VALUE;
        for (NodeInfo node : nodes.values()) {
            if (max < node.getMaxSumComplete()) {
                max = node.getMaxSumComplete();
            }
            if (max < node.getMaxSumIncomplete()) {
                max = node.getMaxSumIncomplete();
            }
        }

        return max;
    }

    private void calculateMax(TreeNode currentNode, int index, Map<Integer, NodeInfo> nodesInfo) {
        if (currentNode.getLeft() == null && currentNode.getRight() == null) {
            NodeInfo nodeInfo = new NodeInfo(index, currentNode.getVal(), currentNode.getVal());
            nodesInfo.put(index, nodeInfo);
            return ;
        }

        int maxIncompleteLeft = 0;
        if (currentNode.getLeft() != null) {
            calculateMax(currentNode.getLeft(), 2 * index + 1, nodesInfo);
            maxIncompleteLeft = nodesInfo.get(2 * index + 1).getMaxSumIncomplete();
        }
       
        int maxIncompleteRight = 0;
        if (currentNode.getRight() != null) {
            calculateMax(currentNode.getRight(), 2 * index + 2, nodesInfo);
            maxIncompleteRight = nodesInfo.get(2 * index + 2).getMaxSumIncomplete();
        }

        int maxComplete = maxIncompleteLeft + currentNode.getVal() + maxIncompleteRight;
        int maxIncomplete = Math.max(Math.max(maxIncompleteLeft, maxIncompleteRight), 0) + currentNode.getVal();

        NodeInfo nodeInfo = new NodeInfo(index, maxComplete, maxIncomplete);
        nodesInfo.put(index, nodeInfo);
    }

    class NodeInfo {
        int index;
        int maxSumComplete;
        int maxSumIncomplete;

        public NodeInfo(int index, int maxSumComplete, int maxSumIncomplete) {
            this.index = index;
            this.maxSumComplete = maxSumComplete;
            this.maxSumIncomplete = maxSumIncomplete;
        }

        public int getIndex() {
            return index;
        }

        public int getMaxSumComplete() {
            return maxSumComplete;
        }

        public int getMaxSumIncomplete() {
            return maxSumIncomplete;
        }
    }
}

O soluție super eficientă (leetcode):

class Solution {
    int sum = Integer.MIN_VALUE;
    public int maxPathSum(TreeNode root) {
        maxSum(root);
        return sum;
    }

    int maxSum(TreeNode node) {
        if(node == null) {
            return 0;
        }

        int left = maxSum(node.left);
        int right = maxSum(node.right);
        int ret = Integer.max(node.val, node.val + Integer.max(left, right));
        sum = Integer.max(sum, Integer.max(ret, node.val + left + right));
        return ret;
    }
}

Niciun comentariu: